467 research outputs found

    Steady state analytical solutions for pumping in a fully bounded rectangular aquifer

    Get PDF
    Using the Schwartz-Christoffel conformal mapping method together with the complex variable techniques, we derive steady state analytical solutions for pumping in a rectangular aquifer with four different combinations of impermeable and constant-head boundaries. These four scenarios include: (1) one constant-head boundary and three impermeable boundaries, (2) two pairs of orthogonal impermeable and constant-head boundaries, (3) three constant-head boundaries and one impermeable boundary, and (4) four constant-head boundaries. For these scenarios, the impermeable and constant-head boundaries can be combined after applying the mapping functions, and hence only three image wells exist in the transformed plane, despite an infinite number of image wells in the real plane. The closed-form solutions reflect the advantage of the conformal mapping method, though the method is applicable for the aspect ratio of the rectangle between 1/10.9 and 10.9/1 due to the limitation in the numerical computation of the conformal transformation from a half plane onto an elongated region (i.e., so-called “crowding” phenomenon). By contrast, for an additional scenario with two parallel constant-head boundaries and two parallel impermeable boundaries, an infinite series of image wells is necessary to express the solution, since it is impossible to combine these two kinds of boundaries through the conformal transformation. The usefulness of the results derived is demonstrated by an application to pumping in a finite coastal aquifer

    Analytical solutions of seawater intrusion in sloping confined and unconfined coastal aquifers

    Get PDF
    Sloping coastal aquifers in reality are ubiquitous and well documented. Steady state sharp-interface analytical solutions for describing seawater intrusion in sloping confined and unconfined coastal aquifers are developed based on the Dupuit-Forchheimer approximation. Specifically, analytical solutions based on the constant-flux inland boundary condition are derived by solving the discharge equation for the interface zone with the continuity conditions of the head and flux applied at the interface between the freshwater zone and the interface zone. Analytical solutions for the constant-head inland boundary are then obtained by developing the relationship between the inland freshwater flux and hydraulic head and combining this relationship with the solutions of the constant-flux inland boundary. It is found that for the constant-flux inland boundary, the shape of the saltwater interface is independent of the geometry of the bottom confining layer for both aquifer types, despite that the geometry of the bottom confining layer determines the location of the interface tip. This is attributed to that the hydraulic head at the interface is identical to that of the coastal boundary, so the shape of the bed below the interface is irrelevant to the interface position. Moreover, developed analytical solutions with an empirical factor on the density factor are in good agreement with the results of variable-density flow numerical modeling. Analytical solutions developed in this study provide a powerful tool for assessment of seawater intrusion in sloping coastal aquifers as well as in coastal aquifers with a known freshwater flux but an arbitrary geometry of the bottom confining layer

    Effects of episodic rainfall on a subterranean estuary

    Get PDF
    Numerical simulations were conducted to examine the effect of episodic rainfall on nearshore groundwater dynamics in a tidally influenced unconfined coastal aquifer, with a focus on both long-term (yearly) and short-term (daily) behavior of submarine groundwater discharge (SGD) and seawater intrusion (SWI). The results showed nonlinear interactions among the processes driven by rainfall, tides, and density gradients. Rainfall-induced infiltration increased the yearly averaged fresh groundwater discharge to the ocean but reduced the extents of the saltwater wedge and upper saline plume as well as the total rate of seawater circulation through both zones. Overall, the net effect of the interactions led to an increase of the SGD. The nearshore groundwater responded to individual rainfall events in a delayed and cumulative fashion, as evident in the variations of daily averaged SGD and salt stored in the saltwater wedge (quantifying the extent of SWI). A generalized linear model (GLM) along with a Gamma distribution function was developed to describe the delayed and prolonged effect of rainfall events on short-term groundwater behavior. This model validated with results of daily averaged SGD and SWI from the simulations of groundwater and solute transport using independent rainfall data sets, performed well in predicting the behavior of the near-shore groundwater system under the combined influence of episodic rainfall, tides, and density gradients. The findings and developed GLM form a basis for evaluating and predicting SGD, SWI, and associated mass fluxes from unconfined coastal aquifers under natural conditions, including episodic rainfall

    Cell–cell contact promotes Ebola virus GP-mediated infection

    Get PDF
    AbstractEbola virus (EBOV) is a highly pathogenic filovirus that causes hemorrhagic fever in humans and animals. Here we provide evidence that cell–cell contact promotes infection mediated by the glycoprotein (GP) of EBOV. Interestingly, expression of EBOV GP alone, even in the absence of retroviral Gag-Pol, is sufficient to transfer a retroviral vector encoding Tet-off from cell to cell. Cell-to-cell infection mediated by EBOV GP is blocked by inhibitors of actin polymerization, but appears to be less sensitive to KZ52 neutralization. Treatment of co-cultured cells with cathepsin B/L inhibitors, or an entry inhibitor 3.47 that targets the receptor NPC1 for virus binding, also blocks cell-to-cell infection. Cell–cell contact also enhances spread of rVSV bearing GP in monocytes and macrophages, the primary targets of natural EBOV infection. Altogether, our study reveals that cell–cell contact promotes EBOV GP-mediated infection, and provides new insight into understanding EBOV spread and viral pathogenesis

    Estimator: An Effective and Scalable Framework for Transportation Mode Classification over Trajectories

    Full text link
    Transportation mode classification, the process of predicting the class labels of moving objects transportation modes, has been widely applied to a variety of real world applications, such as traffic management, urban computing, and behavior study. However, existing studies of transportation mode classification typically extract the explicit features of trajectory data but fail to capture the implicit features that affect the classification performance. In addition, most of the existing studies also prefer to apply RNN-based models to embed trajectories, which is only suitable for classifying small-scale data. To tackle the above challenges, we propose an effective and scalable framework for transportation mode classification over GPS trajectories, abbreviated Estimator. Estimator is established on a developed CNN-TCN architecture, which is capable of leveraging the spatial and temporal hidden features of trajectories to achieve high effectiveness and efficiency. Estimator partitions the entire traffic space into disjointed spatial regions according to traffic conditions, which enhances the scalability significantly and thus enables parallel transportation classification. Extensive experiments using eight public real-life datasets offer evidence that Estimator i) achieves superior model effectiveness (i.e., 99% Accuracy and 0.98 F1-score), which outperforms state-of-the-arts substantially; ii) exhibits prominent model efficiency, and obtains 7-40x speedups up over state-of-the-arts learning-based methods; and iii) shows high model scalability and robustness that enables large-scale classification analytics.Comment: 12 pages, 8 figure

    PD-1 expression on peripheral CD8+ TEM/TEMRA subsets closely correlated with HCV viral load in chronic hepatitis C patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Tight correlation between host circulating CD8+ T cell-mediated immune response and control of viral replication is classical characteristic of long-term HCV infection. CD8+ T cell maturation/activation markers are expected to be associated with viral replication and disease progression in chronic HCV infection. The aim of the present study was to explore novel markers on CD8+ T cells with ability to evaluate HCV viral replication and disease progression.</p> <p>Methods</p> <p>PBMCs were isolated from 37 chronic HCV-infected patients and 17 healthy controls. Distributed pattern of CD8+ T cells subsets and expression of PD-1, CD38, HLA-DR and CD127 were analyzed by flow cytometry. The correlation between expression of surface markers and HCV viral load or ALT was studied.</p> <p>Results</p> <p>Declined naïve and increased TEMRA CD8+ T subsets were found in HCV-infected individuals compared with healthy controls. Percentage and MFI of PD-1, CD38 and HLA-DR on all CD8+ T cell subsets were higher in HCV-infected patients than healthy controls. In contrast, CD127 expression on CD8+ TCM showed an opposite trend as PD-1, CD38 and HLA-DR did. In chronic HCV infection, MFI of PD-1 on CD8+ TEM (p < 0.0001) and TEMRA (p = 0.0015) was positively correlated with HCV viral load while HLA-DR expression on non-naive CD8+ T cell subsets (p < 0.05) was negatively correlated with HCV viral load.</p> <p>Conclusion</p> <p>PD-1 level on peripheral CD8+ TEM/TEMRA was highly correlated with HCV viral load in chronic HCV-infected patients, which made PD-1 a novel indicator to evaluate HCV replication and disease progression in chronic hepatitis C patients.</p
    corecore